Congrats Wael on your ARC DECRA

Congratulations to Monash Biomedicine Discovery Institute researcher Dr Wael Awad who is one of 15 Monash researchers recognised with Discovery Early Career Researcher Awards (DECRA) from the Australian Research Council (ARC).

Dr Awad’s (Le Nours Lab) project aims to undertake discovery research to investigate the roles of metabolites in T cell immunity. This project expects to generate new knowledge in the areas of cellular biology and immunology by using cutting-edge molecular and immunological approaches. This will provide fundamental insights into the mechanisms that govern microbial metabolite-based T cell immunity, which may advise future research into vaccines or therapeutics.

In addition to knowledge gains, Dr Awad’s expected project outcomes include developing innovative methodology and building international collaborations to enhance national research capabilities. This will place Australia at the forefront of conceptually innovative discovery in the life sciences.

More than $6.25 million has been awarded to the 15 Monash researchers under the DECRA scheme, which provides focused research support for early career researchers in both teaching and research, and research-only positions.

Deputy Vice-Chancellor (Research) and Senior Vice-President Professor Rebekah Brown said: “This is great recognition of the excellent research these researchers are doing so early in their careers.”

“This investment allows them to build their career pathway and grow the impact of their research. The diverse range of projects across disciplines and faculties – and the real-world impact of these projects – shows that the future is bright for research at Monash.”

Read about each of the 15 Monash researchers who have been recognised with DECRAs from ARC.

A total of $83 million was distributed in the 2021 round. Read the full details on the ARC website.

Original article

Monash researchers make fundamental advance in understanding T cell immunity

Monash University researchers have provided a fundamental advance regarding how T cells become activated when encountering pathogens such as viruses.

The recent study published in Science, co-led by Professor Nicole La GrutaProfessor Jamie Rossjohn and Professor Stephanie Gras with first author Dr Pirooz Zareie from the Monash Biomedicine Discovery Institute, have found that T Cells need to recognise pathogens in a particular orientation in order to receive a strong activating signal.

T cells play a key role in the immune system by eliminating invading pathogens, such as viruses, and it is crucial to understand the factors that determine how and why T cells become activated after recognizing these pathogens.

T cells express on their surface a T cell receptor (TCR) that recognizes and binds to virus fragments (antigens) presented by infected cells.  This recognition event can lead to T cell activation and killing of infected cells.

“The central issue is that there are millions of different T cell receptors (TCRs) in the human body, and a vast array of viruses, making it difficult to understand the rules around how T cell receptor recognition of a virus drives T cell activation. Indeed, it is a problem that has remained contentious for over 25 years” says Professor La Gruta.

“Our study has shown that the orientation in which the T cell receptor binds is a primary factor determining whether the T cell receives an activating signal,” Professor La Gruta said.

“This is an advance in our fundamental understanding of how a T cell needs to ‘see’ pathogenic antigens in order to be activated,” she said. “It has clarified a critical mechanism essential for effective T cell immunity. It is also relevant to the ongoing development of immunotherapies that aim to boost the activation of T cells.”

Dr Pirooz Zareie stated: “a combination of technologies, including super-resolution microscopy, X-ray crystallography at the Australian Synchrotron, biochemical assays and using in vitro and in vivo experimental models from a variety of labs led to the findings.”

The study represented a cross-disciplinary collaboration between researchers from the University of Utah, National University of Singapore, University of New South Wales and Monash University.

TCR-pMHC recognition - through the looking glass. The image shows a brightly colored canonical interaction between TCR and pMHC which is conducive to signal transduction. The faded mirror image shows a reversed TCR-pMHC interaction which is unable to support signal transduction and thus T cell activation. (Created by Dr. Erica Tandori (Rossjohn lab))

TCR-pMHC recognition – through the looking glass. The image shows a brightly colored canonical interaction between TCR and pMHC which is conducive to signal transduction. The faded mirror image shows a reversed TCR-pMHC interaction which is unable to support signal transduction and thus T cell activation. (Created by Dr. Erica Tandori, Rossjohn lab)

Read the full paper in Science titled: Canonical T cell Receptor Docking on peptide-MHC is essential for T cell signaling.DOI: 10.1126/science.abe9124

Original article

Also see ARC Research Highlights

Congratulations to Jia Jia and Claerwen whose study on Rheumatoid Arthritis was published today in Science Immunology

New understanding of the deleterious immune response in rheumatoid arthritis

Researchers within the Biomedicine Discovery Institute (BDI) at Monash University have made a breakthrough in understanding the role played by high-risk immune genes associated with the development of rheumatoid arthritis (RA).

The findings, published in Science Immunology, were the result of a seven-year collaboration led by Monash University, involving Janssen Biotech, Inc., Janssen Cilag Pty Ltd., Janssen Research & Development, LLC and the Karolinska Institute, Sweden.

Certain immune system genes, called Human Leukocyte antigen (HLA)-DR4, cause an increased susceptibility to RA.  In this study, using mice genetically modified to express the human HLA-DR4 molecule, the team examined, at the molecular and cellular levels, how T cells recognise these HLA-DR4 molecules. The team also showed that highly similar T cell receptors, likely with similar recognition characteristics, are also present in “RA-susceptible” humans expressing these HLA molecules.

“This suggests that there may be an immune signature of RA development, providing a potential avenue for diagnostic development or a window of opportunity for therapeutic development,” says Dr Hugh Reid, who co-led the study with Professor Jamie Rossjohn and Professor Nicole La Gruta at Monash University.

With the assistance of the Australian Synchrotron, the researchers were able to determine the structure of the molecular complexes that form during the interaction between T cell receptors and altered joint proteins bound to HLA-DR4. Armed with this information, they were able to work out what was important in this deleterious T cell response.

“This research is an excellent example of how collaborative efforts between major academic and industrial partners can lead to breakthroughs in basic science that in turn provide avenues for the development of better therapeutics for common diseases,” says Dr Reid.

Rheumatoid arthritis is an autoimmune disease affecting about one per cent of the world’s population. It is characterised by swollen, painful, stiff joints, and consequently, restricted mobility in sufferers. By working out how T cells recognise altered joint proteins in complex with ‘susceptibility’ HLA molecules, Monash scientists have advanced our understanding of how these HLA molecules may predispose individuals to the development of disease. The insight provided may greatly assist in achieving the long-term goal of producing personalised medicines and/or preclinical interventions to treat RA.

Read the full paper in Science Immunology titled: The shared susceptibility epitope of HLA-DR4 binds citrullinated self-antigens and the TCR

Original article

See also:

New hope for rheumatoid arthritis sufferers as Melbourne researchers make new discovery

ASBMB Today: Unravelling the mind’s eye — science through a novel lens

Erica’s story and our Sensory Science initiative is featured on page 33 of the April issue of ASBMB Today: Science & Art.

 

View PDF 

View article online

Original story by Kamalika Saha in ASBMB Today : Science & Art 

Congrats Erica on the award of the National Science Week grant ‘My Goodness: Interactive multisensory science books’

Get a taste for science in National Science Week!

Our $500 000 grant round for 2021 has just been announced with great projects from around the country preparing to celebrate science. Many of the projects took inspiration from the National Science Week school theme of Food – Different by Design, including Food – Now and into the Future which is all about making healthy food choices and will be presented by the Wesley Mission in Logan City just south of Brisbane.

STEAM Ahead – Foodlovers is an exploration of traditional Indigenous food and modern food production techniques at the Western Sydney Parkland. If you’re thirsty for more, four boutique brewers will conjure special brews for ExBEERimental Science in Hobart and share their techniques and tastes with both live and virtual audiences.

And while they may not be delicious, the Donut Shooting Robots in Adelaide will fight it out as 15 teams go head to head in a design – build – program competition.

Minister for Industry, Science and Technology Karen Andrews said the Australian Government was proud to support inspiring, innovative and accessible projects as part of National Science Week.

“Science is everywhere, and National Science Week is for everyone,” Minister Andrews said.

“Even in the midst of last year’s lockdowns, more than one million Australians took part in events across every state and territory. This year, we’re looking to boost those numbers even higher.

“From concerts to VR tours and everything in between, this year’s National Science Week grant recipients have something to offer every Australian.”

The grant recipients are:

VIC

My Goodness: Interactive multisensory science books
Monash University

Read about immune system cells through your sense of touch or learn about food and nutrition through a 3D soundscape. ‘My Goodness’, a Rossjohn Sensory Science Multisensory Science Book, is an exhibition of 10 interactive ‘books’ designed for low-vision, blind, hearing-impaired, deaf, and non-disabled audiences.

The Books explore the relationship between infection, immunity, food, and nutrition. They make science accessible to more people by using large print text, braille, tactile artworks, haptic and 3DAudio, visual tracking and tactile sensor interaction technologies.

Original article

National Science Week 2021 will run from 14-22 August. Watch this space for further details.